University of Global Village (UGV), Barishal

UNIVERSITY OF GLOBAL VILLAGE

Content of the Sessional Course
University Student (UGV) Format

Program: Bachelor of Science in Computer Science Engin

Prepared By: Sohag Mollik

Lecturer, Dept. Of CSE
University Of Global Village (UGV), Barishal

Course Code

Name of Course Title Web Page design & development (Level-2)

Course Type Skill Course

Level 2nd Semester

Academic Session Winter 2025
Name(s) of Sohag Mollik, Lecturer, CSE. Mobile: 01304142395
AcademicCourse E-mail: sohag.cse.just@gmail.com
teacher(s)

Consultation Hours:

Web Page design & development Lab Student (UGV) Format

Course Code: --

m Hours --

Semester
Computer Science Engineering (CSE

Prepared By: Sohag Mollik
Lecturer, Dept. Of CSE

University Of Global Village (UGV), Barishal

mailto:sohag.cse.just@gmail.com

1. Course Learning Outcome (CLO) at the end of the course, the students will be able to-

2. Topics to be covered

Mapping with

\Week Topics Teaching-Learning | Class| Practice] Assessment
Strategy(s) Hour] Hour Strategy(s) CLO
01 avaScript syntax, variables, Lecture, Live 5h 4h [Participation, Lab CLO1
operators, and data types. demonstration Performance
& Hands-on exercises.
02 |Control structures: if-else, Lecture, Interactive 5h 4h |Short quiz, Lab tasks CLO 1
switch- case, loops (for, while, Jcoding examples &
jdo-while). Exercises.
03 JFunctions: function declaration, JLecture, Code-along & 5h 4h JCode reviews, CLO1
expression, and arrow functions. JProblem-solving tasks. Participation
04 |Objects and arrays: properties, JLecture, Hands-on 5h 4h Lab assignments, Class CLO 2
methods, and manipulation fexercises discussion.
techniques. & Real-world examples.
05 [|DOM manipulation: element Lecture, Live demos, & 5h 5h JParticipation, Mini- CLO 2
selection, events, and updates. |JGroup exercises. projects.
(06 JStrings and numbers: methods, JCode-along, Practice tasks|] 5h 4h |Lab exercises, Quiz. CLO 2
search, templates, and properties. |& Problem-solving.
07 avaScript dates, math Interactive demonstration,|] 5h 5h JLab assignments, CLO 2
(operations, and random number JPractical examples. Participation.

generation.

Prepared By: Sohag Mollik

Lecturer, Dept. Of CSE _
University Of Global Village (UGV), Barishal

08 JAdvanced JavaScript: Lecture, Hands-on 5h 4h |Debugging tasks, Short CLO 3
destructuring, hoisting, this challenges, Debugging quiz.
keyword, and scope. tasks.

09 |Classes, constructors, and Code-along, Problem- 5h 4h Lab exercises, CLO 3
modules. solving Participation.

& Case studies.

10 JJSON: working with structured [JLecture, Data-driven 5h 4h JLab assignments, Quiz. CLO 4
data, parsing, and manipulation. Jtasks, Hands-on practice.

11 |Type conversion and regular Lecture, Pattern-matching] 5h 5h JLab assignments, Quiz. CLO 4
fexpressions. Jexercises.

12 |Sets and maps: methods, Lecture, Group exercises, 5h 3h [Participation, Mini- CLO 4
iteration, and usage. and Coding practice. projects.

13 |Debugging techniques and Practical debugging 5h 4h |Code debugging tasks. CLOS5
browser developer tools. sessions, Code

walkthrough.

14 PavaScript style guide, best Lecture, Refactoring 5h 5h JLab reviews, Quiz. CLO5
practices, and performance tasks, Group discussion
optimization.

15 |Error handling and common Lecture, Practical error- 5h 5h |Code review, CLOS5
JavaScript mistakes. Jhandling sessions. Participation.

16 |Real-world web application: Group project, Live 5h 5h JProject evaluation, CLO 6
integrating JavaScript with guidance. Participation.
HTML and CSS.
Final project development and JProject work, Mentoring Project demonstration
deployment.

Prepared By: Sohag Mollik

Lecturer, Dept. Of CSE _
University Of Global Village (UGV), Barishal

3. Teaching-Learning Strategy:

el_ecture: Explain concepts with real-world examples and visual aids.

oL ive Demonstration: Show step-by-step coding and debugging in real-time.
eInteractive Coding Examples: Engage students with challenges during class.
eHands-on Exercises: Provide structured practice aligned with topics.
eCode-along Sessions: Guide students through practical coding implementations.
eProblem-solving Tasks: Assign real-world challenges to apply concepts.
eGroup Discussions: Facilitate discussions on best practices and peer reviews.
eMini-projects: Assign small, focused projects incorporating multiple concepts.
eDebugging Sessions: Teach error identification and resolution with tools.
eFinal Project Work: Mentor students in developing a complete web application.

4.Assessment Strategy:

Lab Performance: 30% (Lab participation, hands-on exercises, and weekly assessments)
Quizzes and Short Tests: 20% (Regular quizzes on theoretical concepts)

Assignments and Reports: 20% (Assignments related to data management, cloud
integration, and security)

Project Evaluation: 30% (Progress, final project implementation, and presentation)

R R R
0.0 0.0 0.0

R
0.0

5.Instructional Materials and References: Textbooks:

1."Eloquent JavaScript" by Marijn Haverbeke
2."JavaScript: The Definitive Guide" by David Flanagan

Additional References:

Follow w3school JavaScript & others website.

Prepared By: Sohag Mollik

Lecturer, Dept. Of CSE :
University Of Global Village (UGV), Barishal

@kl

@ o
@
@
Prepared By: Sohag Mollik
J Lecturer, Dept. Of CSE
? University Of Global Village (UGV), Barishal

Prepared By: Sohag Mollik

Lecturer, Dept. Of CSE
University Of Global Village (UGV), Barishal

JavaScript

Origin of JavaScript

* Netscape Communications had the vision that the web needed a way
to become more dynamic.

* They wanted Animations, Interaction and other forms of small
Automation as part of the web of the future.

* The goal was to seek ways to expand the web.
* And that is exactly what gave birth to JavaScript.

* Brendan Eich, the father of JavaScript, was contracted by Netscape
Communications to develop a scheme for the browser.

*Java was considered unsuitable for the type of audience
that would consume Mocha (pre version of JavaScript) such
as scripters, amateurs, designers as it took a lot of effort
and time for such simple tasks.

*So the idea was to make Java available for big, professional,
component writers, while Mocha would be used for small
scripting tasks.

*In December 1995, Netscape Communications and Sun
closed the deal and Mocha/LiveScript was renamed
as JavaScript.

*Java was promoted as a bigger, professional tool to develop
rich web components.

Introduction to JavaScript
v’ JavaScript is a high level, interpreted, programming language used to make
web pages more interactive.
v/ It is a very powerful client-side scripting language which makes your
webpage more lively and interactive.
v It is a programming language that helps you to implement a complex and
beautiful design on web pages.

v If you want your web page to look alive JavaScript is a must.

Features of JavaScript:

o[t is a Scripting Language and has nothing to do with Java. Initially, It was
named Mocha, then changed to LiveScript and finally it was named as JavaScript.
eJavaScript is an object-based programming language that supports
polymorphism, encapsulation, and inheritance as well.

eYou can run JavaScript not only in the browser but also on the server and any
device which has a JavaScript Engine.

What can JavaScript do?

JavaScript is used to create beautiful web pages and applications. It is mostly

[mm—
- a

used to make your web look alive and adds variety to the page. | '

It is also used in smart watches. An example of this is the popular smart watch

maker called Pebble that has created a small JavaScript Framework called

Pebble.js. B

\
[

JavaScript is also used to make Games. A lot of developers are building small-

scale games and apps using JavaScript. “

Most popular websites like Google, Facebook, Netflix, Amazon, etc make use of

JavaScript to build their websites.

HTML vs. CSS vs. JavaScript
If you are familiar with JavaScript, you would know the relationship
between HTML, CSS and JavaScript. Let’s have a look at an example to

understand the analogy.
O HTML(Hyper Text Markup Language) is more like the

/ A skeleton of the web. It is used for displaying the web.
<[> />
E O On the other hand, CSS is like our clothes. It makes

o

the web look better. It uses CSS which stands for

o/ PR &

1/,*\}'

"?C | | ,ﬂ; Cascading Style Sheets for styling purpose.
el ?’g

O Finally, JavaScript is used to add life to a web page.
Just like how kids move around using the skateboard,

the web also motions with the help of JavaScript.

Benefits of JavaScript

JavaScript is preferred by many developers because of the following benefits:
* |tis Easy to learn and implement.
JavaScript is a fast client-side programming language.
It has a rich set of Frameworks such as AngularJS and ReactlS.
This is used to build beautifully designed, interactive websites.

It is a platform-independent programming language.

For more information please visit this link

https://www.edureka.co/blog/javascript-tutorial/#variables

15| Page

" N

@ O
@
@
Prepared By: Sohag Mollik
(O Lecturer, Dept. Of CSE
? University Of Global Village (UGV), Barishal

Variables
A memory location that acts as a container for storing data is named as
a Variable. They are reserved memory locations.

Memory location

Variable name e'

You have to use the ‘let’ keyword to declare a variable. The syntax is as follows:

let age;

age = 23;

Data Types
You can assign different types of values to a variable such as a number or a
string. There are different data types such as:

eNumbers

oStrings

*Boolean

eUndefined Nianhars
eNull

4

The Concept of Data Types
let length = 16; // Number

let lastName = "Johnson"; // String
let x = {firstName:"John", lastName:"Doe"}; // Object

let x = 16 + "Volvo";
Result: 16Volvo

let x ="16" + "Volvo“
Result: 16Volvo

When adding a number and a string, JavaScript will treat the
number as a string.

19| Page

<IDOCTYPE html>
<html>
<body>

<h2>JavaScript</h2>

<p>When adding a number and a string, JavaScript will treat
the number as a string.</p>

<p id="demo"></p>

<script>

let x = 16 + "Volvo";
document.getElementByld("demo").innerHTML = x;
</script>

</body>
</html>

Result:

JavaScript

When adding a number and a string, JavaScript
will treat the number as a string.

16Volvo

JavaScript evaluates expressions from left to right. Different
sequences can produce different results:

let x =16 + 4 + "Volvo";
Result: 20Volvo
JavaScript treats 16 and 4 as numbers, until it reaches "Volvo".

let x = "Volvo" + 16 + 4;
Result: Volvo164

Since the first operand is a string, all operands are treated as
strings.

21 |Page

e O .
@
@
Prepared By: Sohag Mollik
J Lecturer, Dept. Of CSE
? University Of Global Village (UGV), Barishal

JavaScript has dynamic types. This means that the same variable can
be used to hold different data types:

let x; // Now x is undefined
X=5; // Now x is a Number
x ="John"; // Now x s a String

23| Page

JavaScript Strings

A string (or a text string) is a series of characters like "John Doe".

Strings are written with quotes. You can use single or double quotes:
let carName1 = "Volvo XC60"; // Using double quotes

let carName2 = 'Volvo XC60'; // Using single quotes

Result:

Volvo XC60

Volvo XC60

24 | Page

<IDOCTYPE html>
<html>
<body>

<h2>JavaScript Strings</h2>

<p>Strings are written with quotes. You can use single or Res U |t :
double quotes:</p>

_ JavaScript Strings
<p id="demo"></p> Strings are written with quotes. You can use single or double
quotes:

<script> Volvo XC60
let carName1l = "Volvo XC60"; Volvo XC60

let carName2 = 'Volvo XC60';

document.getElementByld("demo").innerHTML =
carNamel + "
" +

carName2;

</script>

</body>
</html>

~ You can use quotes inside a string, as long as they don't match the
quotes surrounding the string:

let answerl = "It's alright”; // Single quote inside double quotes

let answer2 = "He is called 'Johnny'"; // Single quotes inside double quotes

let answer3 'He is called "Johnny"'; // Double quotes inside single quotes

<!DOCTYPE html>
<html>
<body>

<h2>JavaScript Strings</h2>

<p>You can use quotes inside a string, as long as they don't
match the quotes surrounding the string:</p>

<p id="demo"></p>

<script>

let answerl ="It's alright";

let answer2 = "He is called 'Johnny'";
let answer3 = 'He is called "Johnny"';

document.getElementByld("demo").innerHTML =
answerl + "
" +

answer2 + "
" +

answer3;

</script>

</body>
</html>

Result:

JavaScript Strings

You can use quotes inside a string, as long as they don't match
the quotes surrounding the string:

It's alright

He is called 'Johnny'

He is called "Johnny"

" N

O O
@
@
® Prepared By: Sohag Mollik
Lecturer, Dept. Of CSE
? University Of Global Village (UGV), Barishal

JavaScript Numbers

JavaScript has only one type of numbers.
Numbers can be written with, or without decimals:

let x1 = 34.00; // Written with decimals

let x2 = 34; // Written without decimals

Extra large or extra small numbers can be written with scientific
(exponential) notation:

let y = 123e5; // 12300000
let z = 123e-5; // ©.00123

29 |Page

JavaScript Booleans

Booleans can only have two values: true or false.

let x

// Returns true

// Returns false

Booleans are often used in conditional testing.

30| Page

WEEK 5 & 6

S O
@
@
Prepared By: Sohag Mollik
(O Lecturer, Dept. Of CSE
? University Of Global Village (UGV), Barishal

JavaScript Arrays

JavaScript arrays are written with square brackets.

Array items are separated by commas.

The following code declares (creates) an array called cars,
containing three items (car names):

const cars = ["Saab", "Volvo", "BMW"];

Array indexes are zero-based, which means the first item is [0],
second is [1], and so on.

32| Page

JavaScript Objects
JavaScript objects are written with curly braces {}.
Object properties are written as name: value pairs, separated by
commas.

const person = {firstName:"John", lastName:"Doe",
age:50, eyeColor:"blue"};

The object (person) in the example above has 4 properties:
firstName, lastName, age, and eyeColor.

The typeof Operator
You can use the JavaScript typeof operator to find the type of a JavaScript
variable.
The typeof operator returns the type of a variable or an expression:

typeof "" // Returns "string"
typeof "John" // Returns "string"
typeof "John Doe" // Returns "string"

typeof © // Returns "number"
typeof 314 // Returns "number"
typeof 3.14 // Returns "number"
typeof (3) // Returns "number"
typeof (3 + 4) // Returns "number"

34| Page

Undefined
In JavaScript, a variable without a value, has the value undefined.

The type is also undefined.

let car; // Value is undefined, type is undefined

Any variable can be emptied, by setting the value to undefined.

The type will also be undefined.

car = undefined; // Value is undefined, type is undefined

Empty Values

An empty value has nothing to do with undefined.
An empty string has both a legal value and a type.

let car = ""; // The value is "", the typeof is "string"

~ Exercise:
Use comments to describe the correct data type of the following
variables:

let length = 16;

let lastName = "Johnson"; I]

const x = { firstName: "John", lastName: "Doe" }; // []

37 | Page

@kl

@ o
@
@
® Prepared By: Sohag Mollik
Lecturer, Dept. Of CSE
? University Of Global Village (UGV), Barishal

JavaScript Operators

Assignment:

The assignment operator (=) assigns a value to a variable.

let x
let y
let z

5; // assign the value 5 to x
2; // assign the value 2 toy
X +Y; // assign the value 7 to z (5 + 2)

Adding:
The addition operator (+) adds numbers:

let x
let y
let z

!

Multiplying

The multiplication operator (*) multiplies numbers.

let x = 5;
let y = 2;
let z = x * y;

Operator Description

+ Addition
JavaScript Arithmetic _ ——
Operators are used to * Multiplication
perform arithmetic on * Exponentiation (ES2016)
numbers: / Division

Modulus (Division Remainder)
Increment

Decrement

JavaScript Assignment Operators
Assignment operators assign values to JavaScript variables.

Operator Example Same As

X=Yy

X=X+y

x=x/y
X=x%y

X=Xx**y

The addition assignment operator (+=) adds a value to a variable.

let x = 10;
X 4= 53 // x will be 10+5=15

JavaScript String Operators
The + operator can also be used to add (concatenate) strings.

let textl = "John";
let text2 = "Doe";
let text3 = textl + " " + text2;

The result of text3 will be: John Doe
The += assighment operator can also be used to add (concatenate)
strings:

let textl = "What a very ";
textl += "nice day";

The result of text1 will be: What a very nice day

o}
@ O

@
@
Prepared By: Sohag Mollik
(O Lecturer, Dept. Of CSE
? University Of Global Village (UGV), Barishal

Adding Strings and Numbers
Adding two numbers, will return the sum, but adding a number and
a string will return a string:

let x = 5 + 5;
let y = "5" + 5;
let z = "Hello" + 5;

The result of x, y, and z will be:
10

55
Hello5

If you add a number and a string, the result will be a string!

JavaScript Comparison Operators

Operator Description

equal to

equal value and equal type

not equal

not equal value or not equal type
greater than

less than

greater than or equal to

less than or equal to

ternary operator

JavaScript Logical Operators

Operator Description

&& logical and
| logical or

! logical not

JavaScript Type Operators

Operator Description
typeof Returns the type of a variable

instanceof Returns true if an object is an instance of an object type

46 | Page

JavaScript Bitwise Operators
Bit operators work on 32 bits numbers.

Any numeric operand in the operation is converted into a 32 bit number. The result is converted back
to a JavaScript number.

Operator Description Example Same as Result Decimal

& AND 5&1 0101 & 0001 0001 1

| OR 5|1 0101 | 0001 0101 5

& NOT ~§ ~0101 1010 10

A XOR 0101~ 0001 0100 4

<< left shift 0101<< 1 1010 10

>> right shift 0101>>1 0010 2

unsigned right 0101>>>1 0010 2
shift

The examples above uses 4 bits unsigned examples. But JavaScript uses 32-bit signed numbers.
Because of this, in JavaScript, ~ 5 will not return 10. It will return -6.
~00000000000000000000000000000101 will return 11111111111111111111111111111010 -

WEEK 9

Page 48 - 54
" .

O O
@
@
Prepared By: Sohag Mollik
(O Lecturer, Dept. Of CSE
? University Of Global Village (UGV), Barishal

Conditional Statements

Conditional Statements

Conditional statement is a set of rules performed if a certain condition

is met. The two types of conditional statements are:
if
* Elseif

49 |Page

The if Statement

Use the if statement to specify a block of JavaScript code to be
executed if a condition is true.

if (condition) {
// block of code to be executed if the condition 1is true

}

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate a JavaScript error.

Make a "Good day" greeting if the hour is less than 18:00:

if (hour < 18) {
greeting = "Good day";
}

The result of greeting will be: Good day

The else Statement

Use the else statement to specify a block of code to be executed
if the condition is false.

if (condition) {

// block of code to be executed if the
condition 1is true
} else {

// block of code to be executed if the
condition 1is false

}

If the hour is less than 18, create a "Good
day" greeting, otherwise "Good evening":

if (hour < 18) {
greeting = "Good day";
} else {
greeting = "Good evening";

}

The result of greeting will be: Good day

The else if Statement
Use the else if statement to specify a new condition if the first
condition is false.

If time is less than 10:00, create a "Good morning"
greeting, if not, but time is less than 20:00, create a
"Good day" greeting, otherwise a "Good evening":
if (condition1) {
// block of code to be executed if if (time < 10) {
conditionl is true greeting = "Good morning";

} else if (condition2) { } else if (time < 12) {
// block of code to be executed if the greeting = "Good day";

conditionl 1is false and condition2 1is true } else {

} else { greeting = "Good evening";
// block of code to be executed if the }

conditionl 1is false and condition2 1is false
} The result of greeting will be: Good day

Conditional Statements -if Conditional Statements else -if

Start

Condition Condition Else if code

If code If code

53| Page

Switch Case

The switch statement is used
to perform different actions
based on different conditions.

54| Page

e O
@
@
() Prepared By: Sohag Mollik
Lecturer, Dept. Of CSE _ 55| Page
? University Of Global Village (UGV), Barishal

The JavaScript Switch Statement

Use the switch statement to select one of many code blocks to be executed.

This is how it works:
O The switch expression is evaluated
switch(expression) {
case X: once.
// code block O The value of the expression is

break; .
case y: compared with the values of each

// code block case.
break;))
default: O If there is a match, the associated
\ Vi e Do block of code is executed.
O If there is no match, the default code

block is executed.

56 | Page

switch (new Date().getDay()) {
case 0:
day = "Sunday";
break;
case 1:
day = "Monday";
break;
case 2:

The getDay() method returns the b‘:?a/kf "Tuesday";

weekday as a number between 0 and 6. case 3:

day = "Wednesday";

(Sunday=0, Monday=1, Tuesday=2 ..) =
This example uses the weekday number case 4:

) day = "Thursday";
to calculate the weekday name: HFeak

case 5:
day = "Friday";
break;

case 6:
day = "Saturday";

}
The result of day will be: Saturday

57 | Page

JavaScript For Loop

Item from If no more items
sequence

Next item from
sequence

Execute Statement (s)

58 | Page

JavaScript For Loop

Loops can execute a block of code a number of times.

Loops are handy, if you want to run the same code over and over again, each
time with a different value.
Often this is the case when working with arrays.

Instead of writing: You can write:

“
";

"<bry": for (let i = @; i < cars.length; i++)
“
"; {

"
"; text += cars[i] + "
";

"
"; }

“
";

59 | Page

The For Loop

The for statement creates a loop with 3 optional expressions:

for (expression 1; expression 2; expression 3)

{
// code block to be executed

}

Expression 1 is executed (one time) before the execution of the code
block.
Expression 2 defines the condition for executing the code block.

Expression 3 is executed (every time) after the code block has been
executed.

The number is 0

for (let 1 = 0; 1 < 5; i++) The number is 1
{ The number is 2
text += "The number is " + i + "
"; The number is 3
} The number is 4

From the example above, you can read:
Expression 1 sets a variable before the loop starts (let i = 0).

Expression 2 defines the condition for the loop to run (i must be less
than 5).
Expression 3 increases a value (i++) each time the code block in the

loop has been executed.

61 |Page

The While Loop

Condition

True

Conditional Code

EB

62| Page

The While Loop

The while loop loops through a block of code as long as a specified condition
is true.

while (condition) {
// code block to be executed

}

In the following example, the code in the loop will run, over and over again, as long as a variable
(i) is less than 10:

while (i < 10) {
text += "The number is
i+4;

}

n

+ 1

If you forget to increase the variable used in the condition, the loop will never end. This will crash
your browser.

63| Page

The Do While Loop

Conditional Code

Condition

64| Page

The Do While Loop

The do while loop is a variant of the while loop. This loop will execute the code block once,
before checking if the condition is true, then it will repeat the loop as long as the condition is
true.

do {

// code block to be executed
}

while (condition);

The example below uses a do while loop. The loop will always be executed at least once, even if
the condition is false, because the code block is executed before the condition is tested:
The number is 0
The number is 1
The number is 2
do { ;
text += "The number is " + i; Thgsiuet ¥S3
- The number is 4
} ’ The number is 5
. . The number is 6
wiile {1 < 3805 The number is 7
The number is 8
The number is 9

Do not forget to increase the variable used in the condition, otherwise the loop will never end!

65| Page

(O Prepared By: Sohag Mollik

Lecturer, Dept. Of CSE
University Of Global Village (UGV), Barishal

Arrays

An array is a data structure that
contains a list of elements which
store multiple values in a single

variable.

Wy

0(1]2]|3]4

67 |Page

JavaScript Arrays

An array is a special variable, which can hold more than one value:

const cars = [“Benz", "Volvo", "BMW"];

Why Use Arrays?
If you have a list of items (a list of car names, for example), storing the cars in single

variables could look like this:

let carl = “Benz";
let car2 = "Volvo";
let car3 = "BMW";

However, what if you want to loop through the cars and find a specific one? And what if you

had not 3 cars, but 300?

The solution is an array!
An array can hold many values under a single name, and you can access the values by

referring to an index number.

68 | Page

Creating an Array

Using an array literal is the easiest way to create a JavaScript Array.

const array_name = [iteml, item2, ...];

It is a common practice to declare arrays with the const keyword.

const cars = ["Saab", "Volvo", "BMW"];

You can also create an array, and then provide the elements:

const cars = [];
cars[@]= "Saab";
cars[1]= "Volvo",;
cars[2]= "BMW";

69 | Page

Accessing Array Elements
You access an array element by referring to the index number:

const cars = ["Saab", "Volvo", "BMW"];
let car = cars[0];

Note: Array indexes start with 0.
[0] is the first element. [1] is the second element.

Access the Full Array

With JavaScript, the full array can be accessed by referring to the array name:

const cars = ["Saab", "Volvo", "BMW"];
document.getElementById("demo").innerHTML =car;

70| Page

Array Properties and Methods

The real strength of JavaScript arrays are the built-in array properties and methods:

cars.length // Returns the number of elements
cars.sort() // Sorts the array

The length Property:
The length property of an array returns the length of an array (the number of array elements).

const fruits =

["Banana”, "Orange", "Apple", "Mango"];
let length = fruits.length;

Result: 4

The length property is always one more than the highest array index.

71 | Page

@kl

O O
@
@
@ Prepared By: Sohag Mollik
Lecturer, Dept. Of CSE
University Of Global Village (UGV), Barishal

JavaScript Functions

A JavaScript function is a block of code designed to perform a particular task.

A JavaScript function is executed when "something" invokes it (calls it).

function myFunction(pl, p2) {
return pl * p2; // The function returns the product of pl and p2

}

Why Functions?
You can reuse code: Define the code once, and use it many times.
You can use the same code many times with different arguments, to produce different

results.

73| Page

JavaScript Function Syntax

Q A JavaScript function is defined with the function keyword, followed by a name,
followed by parentheses ().

O Function names can contain letters, digits, underscores, and dollar signs (same rules
as variables).

A The parentheses may include parameter names separated by commas:
(parameterl, parameter2, ...)

0 The code to be executed, by the function, is placed inside curly brackets: {}

» Function parameters are listed inside the

function name(papameterl) parameterZ) parentheses () in the function dEﬁnition,
parameter3) {

// code to be executed
} by the function when it is invoked.

» Function arguments are the values received

» Inside the function, the arguments (the

parameters) behave as local variables.

74| Page

Function Invocation
The code inside the function will execute when "something" invokes (calls) the

function:

*When an event occurs (when a user clicks a button)
*When it is invoked (called) from JavaScript code
*Automatically (self invoked)

Function Return
When JavaScript reaches a return statement, the function will stop executing.
If the function was invoked from a statement, JavaScript will "return" to execute the

code after the invoking statement.

Functions often compute a return value. The return value is "returned" back to the

"caller":

75| Page

Example

Calculate the product of two numbers, and return the result:

let x = myFunction(4, 3); // Function is called, return value will end up in x

function myFunction(a, b) {
return a * b; // Function returns the product of a and b

}

The result in x will be: 12

76 | Page

JavaScript Object

Real Life Objects, Properties, and Methods
In real life, a car is an object.

A car has properties like weight and color, and methods like start and stop:

Properties Methods

car.name = Fiat car.start()
car.model = 500 car.drive()

car.weight = 850kg car.brake()

car.color = white car.stop()

All cars have the same properties, but the property values differ from car to car.
All cars have the same methods, but the methods are performed at different times.

You have already learned that JavaScript variables are containers for data values.

This code assigns a simple value (Fiat) to a variable named car:

let car = "Fiat";

Objects are variables too. But objects can contain many values.
This code assigns many values (Fiat, 500, white) to a variable named car:

const car = {type:"Fiat", model:"500", color:"white"};

Object Properties

The name:values pairs in JavaScript objects are called properties:

The values are written as name:value pairs (name and value separated by a colon).

Property Property Value
type Fiat
model 500

color white

78 | Page

. O -
@
@
(O Prepared By: Sohag Mollik
Lecturer, Dept. Of CSE
? University Of Global Village (UGV), Barishal

S O
@
@
(O Prepared By: Sohag Mollik
Lecturer, Dept. Of CSE
? University Of Global Village (UGV), Barishal

SDLC

Software /
System Development j

‘ Life Cycle - SDLC
\ \ -
\ % / /(
P

()
\\ % A
N
N < e

uBiseQ

\mp\e > f

Prepared By: Sohag Mollik

Lecturer, Dept. Of CSE
University Of Global Village (UGV), Barishal

Prepared By: Sohag Mollik

Lecturer, Dept. Of CSE . 82| Page
University Of Global Village (UGV), Barishal

